References
1. Zobolas, J., Touré, V., Kuiper, M., & Vercruysse, S. (2020). UniBioDicts: Unified access to Biological Dictionaries. Bioinformatics, 37(1), 143–144. https://doi.org/10.1093/bioinformatics/btaa1065
2. Zobolas, J., Kim, J.-D., Kuiper, M., & Vercruysse, S. (2020). Linking PubDictionaries with UniBioDicts to support Community Curation. BioHackrXiv. https://doi.org/10.37044/osf.io/gzfa8
3. Zobolas, J., Kuiper, M., & Flobak, Å. (2020). emba: R package for analysis and visualization of biomarkers in boolean model ensembles. Journal of Open Source Software, 5(53), 2583. https://doi.org/10.21105/joss.02583
4. Zobolas, J., Monteiro, P. T., Kuiper, M., & Flobak, Å. (2021). Boolean function metrics can assist modelers to check and choose logical rules. http://arxiv.org/abs/2104.01279
5. Vercruysse, S., Zobolas, J., Touré, V., Andersen, M. K., & Kuiper, M. (2020). VSM-box: general-purpose interface for biocuration and knowledge representation. Preprints. https://doi.org/10.20944/preprints202007.0557.v1
6. Touré, V., Zobolas, J., Kuiper, M., & Vercruysse, S. (2021). CausalBuilder: bringing the MI2CAST causal interaction annotation standard to the curator. Database. https://doi.org/10.1093/database/baaa107
7. Perfetto, L., Acencio, M. L., Bradley, G., Cesareni, G., Del Toro, N., Fazekas, D., Hermjakob, H., Korcsmaros, T., Kuiper, M., Lægreid, A., Lo Surdo, P., Lovering, R. C., Orchard, S., Porras, P., Thomas, P. D., Touré, V., Zobolas, J., & Licata, L. (2019). CausalTAB: the PSI-MITAB 2.8 updated format for signalling data representation and dissemination. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz132
8. Abbate, J. (2000). Inventing the internet. MIT press.
9. Naughton, J. (2016). The evolution of the Internet: from military experiment to General Purpose Technology. Journal of Cyber Policy, 1(1), 5–28. https://doi.org/10.1080/23738871.2016.1157619
10. Polasky, S., Kling, C. L., Levin, S. A., Carpenter, S. R., Daily, G. C., Ehrlich, P. R., Heal, G. M., & Lubchenco, J. (2019). Role of economics in analyzing the environment and sustainable development. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 5233–5238. https://doi.org/10.1073/pnas.1901616116
11. Roser, M., Ortiz-Ospina, E., & Ritchie, H. (2013). Life Expectancy. https://ourworldindata.org/life-expectancy (15 May 2021, date last accessed).
12. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.
13. Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661–677. https://doi.org/10.1038/s41580-020-00288-9
14. Bailey, R., & Tupy, M. L. (2020). Ten Global Trends Every Smart Person Should Know: And Many Others You Will Find Interesting. Cato Institute.
15. Gibbons, M. (1999). Science’s new social contract with society. Nature, 402, C81–C84. https://doi.org/10.1038/35011576
16. Healthcare Access and Quality Index. (2015). https://ourworldindata.org/grapher/healthcare-access-and-quality-index (15 May 2021, date last accessed).
17. Apweiler, R., Beissbarth, T., Berthold, M. R., Blüthgen, N., Burmeister, Y., Dammann, O., Deutsch, A., Feuerhake, F., Franke, A., Hasenauer, J., Hoffmann, S., Höfer, T., Jansen, P. L., Kaderali, L., Klingmüller, U., Koch, I., Kohlbacher, O., Kuepfer, L., Lammert, F., … Wolkenhauer, O. (2018). Whither systems medicine? Experimental & Molecular Medicine, 50(3), e453. https://doi.org/10.1038/emm.2017.290
18. Trudeau, R. J. (1976). Dots and lines. Kent State University Press.
19. Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), 17–60.
20. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
21. Barabási, A. L. (2013). Network science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1987). https://doi.org/10.1098/rsta.2012.0375
22. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9. http://igraph.org
23. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media.
24. Mrvar, A., & Batagelj, V. (2016). Analysis and visualization of large networks with program package Pajek. Complex Adaptive Systems Modeling, 4(1), 1–8. https://doi.org/10.1186/s40294-016-0017-8
25. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
26. Dahlquist, K. D., Salomonis, N., Vranizan, K., Lawlor, S. C., & Conklin, B. R. (2002). GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nature Genetics, 31(1), 19–20. https://doi.org/10.1038/ng0502-19
27. Breitkreutz, B.-J., Stark, C., & Tyers, M. (2003). Osprey: a network visualization system. Genome Biology, 4(3), R22. https://doi.org/10.1186/gb-2003-4-3-r22
28. Funahashi, A., Morohashi, M., Kitano, H., & Tanimura, N. (2003). CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO, 1(5), 159–162. https://doi.org/10.1016/s1478-5382(03)02370-9
29. Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M., Jassal, B., May, B., Shamovsky, V., Duenas, C., Rothfels, K., Matthews, L., Song, H., Stein, L., Haw, R., D’Eustachio, P., Ping, P., Hermjakob, H., & Fabregat, A. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33(21), 3461–3467. https://doi.org/10.1093/bioinformatics/btx441
30. Smith, M. A., Shneiderman, B., Milic-Frayling, N., Mendes Rodrigues, E., Barash, V., Dunne, C., Capone, T., Perer, A., & Gleave, E. (2009). Analyzing (social media) networks with NodeXL. Proceedings of the Fourth International Conference on Communities and Technologies - c&t ’09, 255. https://doi.org/10.1145/1556460.1556497
31. Kalamaras, D. (2014). Social Networks Visualizer (SocNetV): Social network analysis and visualization software. http://socnetv.org
32. Chatterjee, T., Albert, R., Thapliyal, S., Azarhooshang, N., & DasGupta, B. (2021). Detecting network anomalies using Forman–Ricci curvature and a case study for human brain networks. Scientific Reports, 11(1), 8121. https://doi.org/10.1038/s41598-021-87587-z
33. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, 29–42. https://doi.org/10.1145/1298306.1298311
34. Maheshwari, P., & Albert, R. (2020). Network model and analysis of the spread of Covid-19 with social distancing. Applied Network Science, 5(1), 1–13. https://doi.org/10.1007/s41109-020-00344-5
35. Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews. Genetics, 12(1), 56–68. https://doi.org/10.1038/nrg2918
36. Vercruysse, S. (2019). VSM Pages. https://vsm.github.io/vsm-pages/intro (15 May 2021, date last accessed).
37. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D. P., Kania, R., Schaeffer, M., St Pierre, S., Twigger, S., White, O., & Yon Rhee, S. (2008). Big data: The future of biocuration. Nature, 455(7209), 47–50. https://doi.org/10.1038/455047a
38. Ammari, M., Chatr Aryamontri, A., Attrill, H., Bairoch, A., Berardini, T., Blake, J., Chen, Q., Collado, J., Dauga, D., Dudley, J. T., Engel, S., Erill, I., Fey, P., Gibson, R., Hermjakob, H., Holliday, G., Howe, D., Hunter, C., Landsman, D., … Zhang, Z. (2018). Biocuration: Distilling data into knowledge. PLOS Biology, 16(4), e2002846. https://doi.org/10.1371/journal.pbio.2002846
39. Jenssen, T.-K., Lægreid, A., Komorowski, J., & Hovig, E. (2001). A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, 28(1), 21–28. https://doi.org/10.1038/ng0501-21
40. IntAct editor. (2007). https://github.com/EBI-IntAct/intact-editor (15 May 2021, date last accessed).
41. Rutherford, K. M., Harris, M. A., Lock, A., Oliver, S. G., & Wood, V. (2014). Canto: an online tool for community literature curation. Bioinformatics, 30(12), 1791–1792. https://doi.org/10.1093/bioinformatics/btu103
42. Canto Documentation. (2014). https://curation.pombase.org/pombe/docs/index/, (15 May 2021, date last accessed).
43. Kuperstein, I., Cohen, D. P. A., Pook, S., Viara, E., Calzone, L., Barillot, E., & Zinovyev, A. (2013). NaviCell: A web-based environment for navigation, curation and maintenance of large molecular interaction maps. BMC Systems Biology, 7(1), 100. https://doi.org/10.1186/1752-0509-7-100
44. Gawron, P., Ostaszewski, M., Satagopam, V., Gebel, S., Mazein, A., Kuzma, M., Zorzan, S., McGee, F., Otjacques, B., Balling, R., & Schneider, R. (2016). MINERVA—A platform for visualization and curation of molecular interaction networks. Npj Systems Biology and Applications, 2(1), 1–6. https://doi.org/10.1038/npjsba.2016.20
45. Novère, N. L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., Demir, E., Wegner, K., Aladjem, M. I., Wimalaratne, S. M., Bergman, F. T., Gauges, R., Ghazal, P., Kawaji, H., Li, L., Matsuoka, Y., Villéger, A., Boyd, S. E., Calzone, L., … Kitano, H. (2009). The Systems Biology Graphical Notation. Nature Biotechnology, 27(8), 735–741. https://doi.org/10.1038/nbt.1558
46. Vercruysse, S., & Kuiper, M. (2020). Intuitive representation of computable knowledge. Preprints. https://doi.org/10.20944/preprints202007.0486.v2
47. Touré, V., Vercruysse, S., Acencio, M. L., Lovering, R., Orchard, S., Bradley, G., Casals-Casas, C., Chaouiya, C., Del-Toro, N., Flobak, Å., Gaudet, P., Hermjakob, H., Licata, L., Lægreid, A., Mungall, C., Niknejad, A., Panni, S., Perfetto, L., Porras, P., … Kuiper, M. (2020). The Minimum Information about a Molecular Interaction Causal Statement (MI2CAST). Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa622
48. Vasundra, T. (2020). MI2CAST Documentation. https://github.com/MI2CAST/MI2CAST/blob/master/docs/MI2CAST_guideline.md (15 May 2021, date last accessed).
49. The UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
50. Meldal, B. H. M., Bye-A-Jee, H., Gajdoš, L., Hammerová, Z., Horáčková, A., Melicher, F., Perfetto, L., Pokorný, D., Lopez, M. R., Türková, A., Wong, E. D., Xie, Z., Casanova, E. B., Del-Toro, N., Koch, M., Porras, P., Hermjakob, H., & Orchard, S. (2019). Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Research, 47(D1), D550–D558. https://doi.org/10.1093/nar/gky1001
51. The RNAcentral Consortium. (2018). RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 47(D1), D1250–D1251. https://doi.org/10.1093/nar/gky1206
52. Whetzel, P. L., Noy, N. F., Shah, N. H., Alexander, P. R., Nyulas, C., Tudorache, T., & Musen, M. A. (2011). BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Research, 39(Web Server issue), W541–5. https://doi.org/10.1093/nar/gkr469
53. Madeira, F., Park, Y. mi, Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
54. Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1–9. https://doi.org/10.1038/sdata.2016.18
55. Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., & Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environmental Science and Technology, 53(3), 1039–1047. https://doi.org/10.1021/acs.est.8b05297
56. Kim, J.-D., Wang, Y., Fujiwara, T., Okuda, S., Callahan, T. J., & Cohen, K. B. (2019). Open Agile text mining for bioinformatics: the PubAnnotation ecosystem. Bioinformatics, 35(21), 4372–4380. https://doi.org/10.1093/bioinformatics/btz227
57. Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L., Ceol, A., Moore, S., Orchard, S., Sarkans, U., Mering, C. von, Roechert, B., Poux, S., Jung, E., Mersch, H., Kersey, P., Lappe, M., Li, Y., Zeng, R., Rana, D., … Apweiler, R. (2004). The HUPO PSI’s Molecular Interaction format—a community standard for the representation of protein interaction data. Nature Biotechnology, 22(2), 177–183. https://doi.org/10.1038/nbt926
58. Sivade, M., Alonso-López, D., Ammari, M., Bradley, G., Campbell, N. H., Ceol, A., Cesareni, G., Combe, C., De Las Rivas, J., Del-Toro, N., Heimbach, J., Hermjakob, H., Jurisica, I., Koch, M., Licata, L., Lovering, R. C., Lynn, D. J., Meldal, B. H. M., Micklem, G., … Orchard, S. (2018). Encompassing new use cases - level 3.0 of the HUPO-PSI format for molecular interactions. BMC Bioinformatics, 19(1), 134. https://doi.org/10.1186/s12859-018-2118-1
59. Kerrien, S., Orchard, S., Montecchi-Palazzi, L., Aranda, B., Quinn, A. F., Vinod, N., Bader, G. D., Xenarios, I., Wojcik, J., Sherman, D., Tyers, M., Salama, J. J., Moore, S., Ceol, A., Chatr-aryamontri, A., Oesterheld, M., Stümpflen, V., Salwinski, L., Nerothin, J., … Hermjakob, H. (2007). Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biology, 5(1), 44. https://doi.org/10.1186/1741-7007-5-44
60. Licata, L., Lo Surdo, P., Iannuccelli, M., Palma, A., Micarelli, E., Perfetto, L., Peluso, D., Calderone, A., Castagnoli, L., & Cesareni, G. (2019). SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz949
61. Aranda, B., Blankenburg, H., Kerrien, S., Brinkman, F. S. L., Ceol, A., Chautard, E., Dana, J. M., De Las Rivas, J., Dumousseau, M., Galeota, E., Gaulton, A., Goll, J., Hancock, R. E. W., Isserlin, R., Jimenez, R. C., Kerssemakers, J., Khadake, J., Lynn, D. J., Michaut, M., … Hermjakob, H. (2011). PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 8(7), 528–529. https://doi.org/10.1038/nmeth.1637
62. MITAB 2.8 Documentation. (2018). http://psicquic.github.io/MITAB28Format.html, (15 May 2021, date last accessed).
63. Molecular Interactions Community. (2015). https://github.com/MICommunity, (15 May 2021, date last accessed).
64. Software rot (Wikipedia entry). (2014). https://en.wikipedia.org/wiki/Software_rot, (15 May 2021, date last accessed).
65. Sivade, M., Koch, M., Shrivastava, A., Alonso-López, D., De Las Rivas, J., Del-Toro, N., Combe, C. W., Meldal, B. H. M., Heimbach, J., Rappsilber, J., Sullivan, J., Yehudi, Y., & Orchard, S. (2018). JAMI: a Java library for molecular interactions and data interoperability. BMC Bioinformatics, 19(1), 133. https://doi.org/10.1186/s12859-018-2119-0
66. GREEKC Hinxton Workshop. (2018). https://www.greekc.org/activity/hinxton-workshop/, (15 May 2021, date last accessed).
67. ELIXIR BioHackathon Paris. (2018). https://2018.biohackathon-europe.org/, (15 May 2021, date last accessed).
68. Del-Toro, N., Zobolas, J., & Touré, V. (2019). Signor Dataset in CausalTAB (PSICQUIC Dev Server). http://wwwdev.ebi.ac.uk/Tools/webservices/psicquic/causality/webservices/current/search/query/*?firstResult=0&maxResults=10&format=tab28, (15 May 2021, date last accessed).
69. PSICQUIC View. (2011). http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml, (15 May 2021, date last accessed).
70. PSICQUIC Universal Client (Cytoscape app). (2012). https://apps.cytoscape.org/apps/psicquicuniversalclient, (15 May 2021, date last accessed).
71. Millán, P. P. (2013). Visualization and analysis of biological networks. Methods in Molecular Biology, 1021, 63–88. https://doi.org/10.1007/978-1-62703-450-0_4
72. Shannon, P. (2020). PSICQUIC: Proteomics Standard Initiative Common QUery InterfaCe. R package version 1.28.0. https://doi.org/10.18129/B9.bioc.PSICQUIC
73. Kleshchevnikov, V. (2021). PItools: Protein interaction data tools. R package. GitHub. https://github.com/vitkl/PItools
74. Wang, R.-S., Saadatpour, A., & Albert, R. (2012). Boolean modeling in systems biology: an overview of methodology and applications. Physical Biology, 9(5), 55001. https://doi.org/10.1088/1478-3975/9/5/055001
75. Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., & Sorger, P. K. (2006). Physicochemical modelling of cell signalling pathways. Nature Cell Biology, 8(11), 1195–1203. https://doi.org/10.1038/ncb1497
76. ElKalaawy, N., & Wassal, A. (2015). Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: A primer. Biosystems, 129, 1–18. https://doi.org/10.1016/J.BIOSYSTEMS.2015.01.008
77. Groen, D., Arabnejad, H., Jancauskas, V., Edeling, W. N., Jansson, F., Richardson, R. A., Lakhlili, J., Veen, L., Bosak, B., Kopta, P., Wright, D. W., Monnier, N., Karlshoefer, P., Suleimenova, D., Sinclair, R., Vassaux, M., Nikishova, A., Bieniek, M., Luk, O. O., … Coveney, P. V. (2021). VECMAtk: a scalable verification, validation and uncertainty quantification toolkit for scientific simulations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2197). https://doi.org/10.1098/rsta.2020.0221
78. Schwab, J. D., Kühlwein, S. D., Ikonomi, N., Kühl, M., & Kestler, H. A. (2020). Concepts in Boolean network modeling: What do they all mean? Computational and Structural Biotechnology Journal, 18, 571–582. https://doi.org/10.1016/j.csbj.2020.03.001
79. Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467. https://doi.org/10.1016/0022-5193(69)90015-0
80. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford University Press, USA.
81. Faure, A., Naldi, A., Chaouiya, C., & Thieffry, D. (2006). Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22(14), e124–e131. https://doi.org/10.1093/bioinformatics/btl210
82. Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T., Thieffry, D., & Chaouiya, C. (2016). Logical Modeling and Dynamical Analysis of Cellular Networks. Frontiers in Genetics, 7, 94. https://doi.org/10.3389/fgene.2016.00094
83. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P. T., Chaouiya, C., Helikar, T., Zinovyev, A., Calzone, L., Cohen-Boulakia, S., Thieffry, D., & Paulevé, L. (2018). The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks. Frontiers in Physiology, 9, 680. https://doi.org/10.3389/fphys.2018.00680
84. Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227
85. Béal, J., Montagud, A., Traynard, P., Barillot, E., & Calzone, L. (2018). Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients. Frontiers in Physiology, 9, 1965. https://doi.org/10.3389/fphys.2018.01965
86. Eduati, F., Doldàn-Martelli, V., Klinger, B., Cokelaer, T., Sieber, A., Kogera, F., Dorel, M., Garnett, M. J., Blüthgen, N., & Saez-Rodriguez, J. (2017). Drug Resistance Mechanisms in Colorectal Cancer Dissected with Cell Type-Specific Dynamic Logic Models. Cancer Research, 77(12), 3364–3375. https://doi.org/10.1158/0008-5472.CAN-17-0078
87. Béal, J., Pantolini, L., Noël, V., Barillot, E., & Calzone, L. (2021). Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLOS Computational Biology, 17(1), e1007900. https://doi.org/10.1371/journal.pcbi.1007900
88. Tognetti, M., Gabor, A., Yang, M., Cappelletti, V., Windhager, J., Rueda, O. M., Charmpi, K., Esmaeilishirazifard, E., Bruna, A., Souza, N. de, Caldas, C., Beyer, A., Picotti, P., Saez-Rodriguez, J., & Bodenmiller, B. (2021). Deciphering the signaling network of breast cancer improves drug sensitivity prediction. Cell Systems, 12. https://doi.org/10.1016/j.cels.2021.04.002
89. Saadatpour, A., Wang, R.-S., Liao, A., Liu, X., Loughran, T. P., Albert, I., & Albert, R. (2011). Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia. PLoS Computational Biology, 7(11), e1002267. https://doi.org/10.1371/journal.pcbi.1002267
90. Flobak, Å., Baudot, A., Remy, E., Thommesen, L., Thieffry, D., Kuiper, M., & Lægreid, A. (2015). Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling. PLOS Computational Biology, 11(8). https://doi.org/10.1371/journal.pcbi.1004426
91. Eduati, F., Jaaks, P., Wappler, J., Cramer, T., Merten, C. A., Garnett, M. J., & Saez‐Rodriguez, J. (2020). Patient‐specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Molecular Systems Biology, 16(2). https://doi.org/10.15252/msb.20188664
92. Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P. (2014). Best Practices for Scientific Computing. PLoS Biology, 12(1), e1001745. https://doi.org/10.1371/journal.pbio.1001745
93. Coveney, P. V., & Highfield, R. R. (2021). When we can trust computers (and when we can’t). Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 379(2197), 20200067. https://doi.org/10.1098/rsta.2020.0067
94. Barnes, N. (2010). Publish your computer code: it is good enough. Nature, 467(7317), 753–753. https://doi.org/10.1038/467753a
95. Prlić, A., & Procter, J. B. (2012). Ten Simple Rules for the Open Development of Scientific Software. PLoS Computational Biology, 8(12), e1002802. https://doi.org/10.1371/journal.pcbi.1002802
96. Karimzadeh, M., & Hoffman, M. M. (2018). Top considerations for creating bioinformatics software documentation. Briefings in Bioinformatics, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134
97. List, M., Ebert, P., & Albrecht, F. (2017). Ten Simple Rules for Developing Usable Software in Computational Biology. PLoS Computational Biology, 13(1), e1005265. https://doi.org/10.1371/journal.pcbi.1005265
98. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. PLoS Computational Biology, 9(10), e1003285. https://doi.org/10.1371/journal.pcbi.1003285
99. Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.
100. Gaddum, J. H. (1940). Pharmacology. Oxford University Press, London.
101. Bliss, C. I. (1939). The Toxicity of Poisons Applied Jointly. Annals of Applied Biology, 26(3), 585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
102. Galton, F. (1907). Vox populi. Nature, 75(1949), 450–451. https://doi.org/10.1038/075450a0
103. Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J., Aderhold, A., Stolovitzky, G., Bonneau, R., Chen, Y., Cordero, F., Crane, M., Dondelinger, F., Drton, M., Esposito, R., Foygel, R., … Zimmer, R. (2012). Wisdom of crowds for robust gene network inference. Nature Methods, 9(8), 796–804. https://doi.org/10.1038/nmeth.2016
104. Flobak, Å. (2016). Systems Medicine: From Modeling Systems Perturbations to Predicting Drug Synergies. PhD Thesis. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2385695
105. Apache Commons. (2021). https://commons.apache.org/, (15 May 2021, date last accessed).
106. Apache Maven. (2021). https://maven.apache.org/, (15 May 2021, date last accessed).
107. Naldi, A. (2018). BioLQM: A Java Toolkit for the Manipulation and Conversion of Logical Qualitative Models of Biological Networks. Frontiers in Physiology, 9, 1605. https://doi.org/10.3389/fphys.2018.01605
108. Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., & Thieffry, D. (2018). Logical Modeling and Analysis of Cellular Regulatory Networks With GINsim 3.0. Frontiers in Physiology, 9, 646. https://doi.org/10.3389/fphys.2018.00646
109. Chaouiya, C., Bérenguier, D., Keating, S. M., Naldi, A., Iersel, M. P. van, Rodriguez, N., Dräger, A., Büchel, F., Cokelaer, T., Kowal, B., Wicks, B., Gonçalves, E., Dorier, J., Page, M., Monteiro, P. T., Kamp, A. von, Xenarios, I., Jong, H. de, Hucka, M., … Helikar, T. (2013). SBML qualitative models: A model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Systems Biology, 7(1), 1–15. https://doi.org/10.1186/1752-0509-7-135
110. Müssel, C., Hopfensitz, M., & Kestler, H. A. (2010). BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26(10), 1378–1380. https://doi.org/10.1093/bioinformatics/btq124
111. Veliz-Cuba, A., Aguilar, B., Hinkelmann, F., & Laubenbacher, R. (2014). Steady state analysis of Boolean molecular network models via model reduction and computational algebra. BMC Bioinformatics, 15(1), 221. https://doi.org/10.1186/1471-2105-15-221
112. JUnit 5. (2021). https://junit.org/junit5/, (15 May 2021, date last accessed).
113. AssertJ - fluent assertions java library. (2021). https://assertj.github.io/doc/, (15 May 2021, date last accessed).
114. Mockito framework site. (2021). https://site.mockito.org/, (15 May 2021, date last accessed).
115. Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman; Hall/CRC. https://bookdown.org/yihui/bookdown
116. Flobak, Å., Niederdorfer, B., Nakstad, V. T., Thommesen, L., Klinkenberg, G., & Lægreid, A. (2019). A high-throughput drug combination screen of targeted small molecule inhibitors in cancer cell lines. Scientific Data, 6(1), 237. https://doi.org/10.1038/s41597-019-0255-7
117. Flobak, Å., Vazquez, M., Lægreid, A., & Valencia, A. (2017). CImbinator: a web-based tool for drug synergy analysis in small- and large-scale datasets. Bioinformatics, 33(15), 2410–2412. https://doi.org/10.1093/bioinformatics/btx161
118. KEGG PATHWAY: Pathways in cancer - Homo sapiens (human). (2000). https://www.genome.jp/kegg-bin/show_pathway?hsa05200, (15 May 2021, date last accessed).
119. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
120. Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432
121. Perkins, N. J., & Schisterman, E. F. (2006). The Inconsistency of “Optimal” Cutpoints Obtained using Two Criteria based on the Receiver Operating Characteristic Curve. American Journal of Epidemiology, 163(7), 670–675. https://doi.org/10.1093/aje/kwj063
122. Chang, W., Cheng, J., Allaire, J. J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2021). shiny: Web Application Framework for R. https://cran.r-project.org/package=shiny, R package version 1.6.0.
123. Xie, Y., Cheng, J., & Tan, X. (2021). DT: A Wrapper of the JavaScript Library ’DataTables’. https://cran.r-project.org/package=DT, R package version 0.18.
124. Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman; Hall/CRC. https://plotly-r.com
125. Grau, J., Grosse, I., & Keilwagen, J. (2015). PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 31(15), 2595–2597. https://doi.org/10.1093/bioinformatics/btv153
126. Wickham, H. (2015). R packages: organize, test, document, and share your code. O’Reilly Media, Inc.
127. Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
128. Mendoza, L., & Xenarios, I. (2006). A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling, 3(1), 13. https://doi.org/10.1186/1742-4682-3-13
129. Fauré, A., & Thieffry, D. (2009). Logical modelling of cell cycle control in eukaryotes: A comparative study. Molecular BioSystems, 5(12), 1569–1581. https://doi.org/10.1039/b907562n
130. Niederdorfer, B., Touré, V., Vazquez, M., Thommesen, L., Kuiper, M., Lægreid, A., & Flobak, Å. (2020). Strategies to Enhance Logic Modeling-Based Cell Line-Specific Drug Synergy Prediction. Frontiers in Physiology, 11, 862. https://doi.org/10.3389/fphys.2020.00862
131. Videla, S., Saez-Rodriguez, J., Guziolowski, C., & Siegel, A. (2016). Caspo: A toolbox for automated reasoning on the response of logical signaling networks families. Bioinformatics, 33(6), 947–950. https://doi.org/10.1093/bioinformatics/btw738
132. Gjerga, E., Trairatphisan, P., Gabor, A., Koch, H., Chevalier, C., Ceccarelli, F., Dugourd, A., Mitsos, A., & Saez-Rodriguez, J. (2020). Converting networks to predictive logic models from perturbation signalling data with CellNOpt. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa561
133. Aghamiri, S. S., Singh, V., Naldi, A., Helikar, T., Soliman, S., & Niarakis, A. (2020). Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa484
134. Helikar, T., Kowal, B., Madrahimov, A., Shrestha, M., Pedersen, J., Limbu, K., Thapa, I., Rowley, T., Satalkar, R., Kochi, N., Konvalina, J., & Rogers, J. A. (2012). Bio-Logic Builder: A Non-Technical Tool for Building Dynamical, Qualitative Models. PLoS ONE, 7(10), e46417. https://doi.org/10.1371/journal.pone.0046417
135. Cury, J. E. R., Monteiro, P. T., & Chaouiya, C. (2019). Partial Order on the set of Boolean Regulatory Functions. arXiv. http://arxiv.org/abs/1901.07623
136. Saez‐Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R., Lauffenburger, D. A., Klamt, S., & Sorger, P. K. (2009). Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Molecular Systems Biology, 5(1), 331. https://doi.org/10.1038/msb.2009.87
137. Shmulevich, I., & Kauffman, S. A. (2004). Activities and sensitivities in Boolean network models. Physical Review Letters, 93(4), 048701. https://doi.org/10.1103/PhysRevLett.93.048701
138. Gherardi, M., & Rotondo, P. (2016). Measuring logic complexity can guide pattern discovery in empirical systems. Complexity, 21, 397–408. https://doi.org/10.1002/cplx.21819
139. Abou-Jaoudé, W., & Monteiro, P. T. (2019). On logical bifurcation diagrams. Journal of Theoretical Biology, 466, 39–63. https://doi.org/10.1016/j.jtbi.2019.01.008
140. Abou-Jaoudé, W., Ouattara, D. A., & Kaufman, M. (2009). From structure to dynamics: Frequency tuning in the p53-Mdm2 network. I. Logical approach. Journal of Theoretical Biology, 258(4), 561–577. https://doi.org/10.1016/j.jtbi.2009.02.005
141. McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv. http://arxiv.org/abs/1802.03426
142. Türei, D., Korcsmáros, T., & Saez-Rodriguez, J. (2016). OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nature Methods, 13(12), 966–967. https://doi.org/10.1038/nmeth.4077
143. Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., & Stuart, J. M. (2010). Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 26(12), i237–i245. https://doi.org/10.1093/bioinformatics/btq182
144. Martignetti, L., Calzone, L., Bonnet, E., Barillot, E., & Zinovyev, A. (2016). ROMA: Representation and quantification of module activity from target expression data. Frontiers in Genetics, 7, 18. https://doi.org/10.3389/fgene.2016.00018
145. Schubert, M., Klinger, B., Klünemann, M., Sieber, A., Uhlitz, F., Sauer, S., Garnett, M. J., Blüthgen, N., & Saez-Rodriguez, J. (2018). Perturbation-response genes reveal signaling footprints in cancer gene expression. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-017-02391-6
146. Dugourd, A., Kuppe, C., Sciacovelli, M., Gjerga, E., Gabor, A., Emdal, K. B., Vieira, V., Bekker‐Jensen, D. B., Kranz, J., Bindels, Eric. M. J., Costa, A. S. H., Sousa, A., Beltrao, P., Rocha, M., Olsen, J. V., Frezza, C., Kramann, R., & Saez‐Rodriguez, J. (2021). Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses. Molecular Systems Biology, 17(1). https://doi.org/10.15252/msb.20209730
147. Karr, J. R., Sanghvi, J. C., MacKlin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B., Assad-Garcia, N., Glass, J. I., & Covert, M. W. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150(2), 389–401. https://doi.org/10.1016/j.cell.2012.05.044
148. Carrera, J., & Covert, M. W. (2015). Why Build Whole-Cell Models? Trends in Cell Biology, 25(12), 719–722. https://doi.org/10.1016/j.tcb.2015.09.004
149. Senft, D., Leiserson, M. D. M., Ruppin, E., & Ronai, Z. A. (2017). Precision Oncology: The Road Ahead. Trends in Molecular Medicine, 23(10), 874–898. https://doi.org/10.1016/j.molmed.2017.08.003
150. Fukuda, K., Kobayashi, A., & Watabe, K. (2012). The Role of tumor-associated macrophage in tumor progression. Frontiers in Bioscience - Scholar, 2, 787–798. https://doi.org/10.2741/s299
151. Marku, M., Verstraete, N., Raynal, F., Madrid-Mencía, M., Domagala, M., Fournié, J. J., Ysebaert, L., Poupot, M., & Pancaldi, V. (2020). Insights on TAM formation from a boolean model of macrophage polarization based on in vitro studies. Cancers, 12(12), 1–23. https://doi.org/10.3390/cancers12123664
152. Desoize, B., & Jardillier, J. C. (2000). Multicellular resistance: A paradigm for clinical resistance? Critical Reviews in Oncology/Hematology, 36(2-3), 193–207. https://doi.org/10.1016/S1040-8428(00)00086-X
153. Komohara, Y., Fujiwara, Y., Ohnishi, K., & Takeya, M. (2016). Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Advanced Drug Delivery Reviews, 99, 180–185. https://doi.org/10.1016/j.addr.2015.11.009
154. Karr, J. R. (2020). An introduction to whole-cell modeling (v0.0.1). https://docs.karrlab.org/intro_to_wc_modeling/master/0.0.1/, (15 May 2021, date last accessed).
155. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J. C., & Hutchison, C. A. (1999). E-CELL: Software environment for whole-cell simulation. Bioinformatics, 15(1), 72–84. https://doi.org/10.1093/bioinformatics/15.1.72
156. Blinov, M. L., Schaff, J. C., Vasilescu, D., Moraru, I. I., Bloom, J. E., & Loew, L. M. (2017). Compartmental and Spatial Rule-Based Modeling with Virtual Cell. Biophysical Journal, 113(7), 1365–1372. https://doi.org/10.1016/j.bpj.2017.08.022
157. Karr, J. R., Takahashi, K., & Funahashi, A. (2015). The principles of whole-cell modeling. Current Opinion in Microbiology, 27, 18–24. https://doi.org/10.1016/j.mib.2015.06.004
158. Macklin, D. N., Ahn-Horst, T. A., Choi, H., Ruggero, N. A., Carrera, J., Mason, J. C., Sun, G., Agmon, E., DeFelice, M. M., Maayan, I., Lane, K., Spangler, R. K., Gillies, T. E., Paull, M. L., Akhter, S., Bray, S. R., Weaver, D. S., Keseler, I. M., Karp, P. D., … Covert, M. W. (2020). Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science, 369(6502). https://doi.org/10.1126/science.aav3751
159. Hallock, M. J., Stone, J. E., Roberts, E., Fry, C., & Luthey-Schulten, Z. (2014). Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations. Parallel Computing, 40(5-6), 86–99. https://doi.org/10.1016/j.parco.2014.03.009
160. Supercomputer (Wikipedia entry). (2020). https://en.wikipedia.org/wiki/Supercomputer, (15 May 2021, date last accessed).
161. Keating, S. M., Waltemath, D., König, M., Zhang, F., Dräger, A., Chaouiya, C., Bergmann, F. T., Finney, A., Gillespie, C. S., Helikar, T., Hoops, S., Malik‐Sheriff, R. S., Moodie, S. L., Moraru, I. I., Myers, C. J., Naldi, A., Olivier, B. G., Sahle, S., Schaff, J. C., … Zucker, J. (2020). SBML Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 16(8), 1–21. https://doi.org/10.15252/msb.20199110
162. Waltemath, D., Karr, J. R., Bergmann, F. T., Chelliah, V., Hucka, M., Krantz, M., Liebermeister, W., Mendes, P., Myers, C. J., Pir, P., Alaybeyoglu, B., Aranganathan, N. K., Baghalian, K., Bittig, A. T., Burke, P. E. P., Cantarelli, M., Chew, Y. H., Costa, R. S., Cursons, J., … Schreiber, F. (2016). Toward Community Standards and Software for Whole-Cell Modeling. IEEE Transactions on Biomedical Engineering, 63(10), 2007–2014. https://doi.org/10.1109/TBME.2016.2560762
163. Burke, P. E. P., Campos, C. B. de L., Costa, L. da F., & Quiles, M. G. (2020). A biochemical network modeling of a whole-cell. Scientific Reports, 10(1), 13303. https://doi.org/10.1038/s41598-020-70145-4
164. Carrera, J., Estrela, R., Luo, J., Rai, N., Tsoukalas, A., & Tagkopoulos, I. (2014). An integrative, multi‐scale, genome‐wide model reveals the phenotypic landscape of Escherichia coli. Molecular Systems Biology, 10(7), 735. https://doi.org/10.15252/msb.20145108
165. Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., Currie, M., Cantarelli, M., Idili, G., & Larson, S. (2014). OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Frontiers in Computational Neuroscience, 8(November), 1–7. https://doi.org/10.3389/fncom.2014.00137
166. Viceconti, M., & Hunter, P. (2016). The Virtual Physiological Human: Ten Years after. Annual Review of Biomedical Engineering, 18, 103–113. https://doi.org/10.1146/annurev-bioeng-110915-114742
167. Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018). PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PLoS Computational Biology, 14(2). https://doi.org/10.1371/journal.pcbi.1005991
168. Letort, G., Montagud, A., Stoll, G., Heiland, R., Barillot, E., Macklin, P., Zinovyev, A., & Calzone, L. (2018). PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics, 35(7), 1188–1196. https://doi.org/10.1093/bioinformatics/bty766
169. Varela, P. L., Ramos, C. V., Monteiro, P. T., & Chaouiya, C. (2018). Epilog: A software for the logical modelling of epithelial dynamics [version 2; peer review: 3 approved]. F1000Research, 7, 1145. https://doi.org/10.12688/F1000RESEARCH.15613.2
170. Cooper, F. R., Baker, R. E., Bernabeu, M. O., Bordas, R., Bowler, L., Bueno-Orovio, A., Byrne, H. M., Carapella, V., Cardone-Noott, L., Cooper, J., Dutta, S., Evans, B. D., Fletcher, A. G., Grogan, J. A., Guo, W., Harvey, D. G., Hendrix, M., Kay, D., Kursawe, J., … Gavaghan, D. J. (2020). Chaste: Cancer, Heart and Soft Tissue Environment. Journal of Open Source Software, 5(47), 1848. https://doi.org/10.21105/joss.01848
171. Stoll, G., Naldi, A., Noël, V., Viara, E., Barillot, E., Kroemer, G., Thieffry, D., & Calzone, L. (2020). UPMaBoSS: a novel framework for dynamic cell population modeling. bioRxiv. https://doi.org/10.1101/2020.05.31.126094
172. Hucka, M., Nickerson, D. P., Bader, G. D., Bergmann, F. T., Cooper, J., Demir, E., Garny, A., Golebiewski, M., Myers, C. J., Schreiber, F., Waltemath, D., & Le Novere, N. (2015). Promoting Coordinated Development of Community-Based Information Standards for Modeling in Biology: The COMBINE Initiative. Frontiers in Bioengineering and Biotechnology, 3, 19. https://doi.org/10.3389/fbioe.2015.00019
173. Zobolas, J. (2020). Rtemps: R Templates for Reproducible Data Analyses. GitHub. https://github.com/bblodfon/rtemps
174. Vázquez, M., Nogales, R., Carmona, P., Pascual, A., & Pavón, J. (2010). Rbbt: A Framework for Fast Bioinformatics Development with Ruby (pp. 201–208). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13214-8_26